- Обсуждение понятия релятивистской массы
- Dims:Масса
- Igorivanov 14:26, 18 Июл 2004 (UTC)
- Dims:Масса
- Igorivanov 14:26, 18 Июл 2004 (UTC)
- Dims 16:55, 18 Июл 2004 (UTC)
- Igorivanov 17:05, 18 Июл 2004 (UTC) Дубль два.
- Dims 17:27, 18 Июл 2004 (UTC) Я могу и по-тупому, мне безразлично.
- Igorivanov 17:43, 18 Июл 2004 (UTC)
- Dims 20:22, 18 Июл 2004 (UTC)
- Igorivanov 07:12, 19 Июл 2004 (UTC)
- MaxiMaxiMax 18:02, 18 Июл 2004 (UTC) Горячие физические парни!
- Igorivanov 18:12, 18 Июл 2004 (UTC)
- MaxiMaxiMax 18:34, 18 Июл 2004 (UTC)
- Dims 20:22, 18 Июл 2004 (UTC)
- Igorivanov 13:23, 21 Июл 2004 (UTC) Признаю свою неправоту
- А в чём причина согласия?
- Igorivanov 09:28, 22 Июл 2004 (UTC)
Содержание
Обсуждение понятия релятивистской массы
Оригинал находится в разделе обсуждения статьи Специальная теория относительности в проекте Wikipedia
Dims: Масса |
Давайте доведем «спор с Окунем» до конца.
|
Igorivanov 14:26, 18 Июл 2004 (UTC) |
Релятивистская масса — не ошибка, а скорее очень неудобный язык разговора, но начинающие могут легко вляпаться в ошибку, когда начинают оперировать такой массой. Поэтому ею пользоваться не рекомендуется. И всего-то. — |
Dims: Масса |
Я не согласен с тем, что релятивистская масса (та, которая растет с ростом скорости) — анизотропна (является тензором, делится на продольную и поперечную и так далее), так как в случае с переменной массой уравнения Ньютона надо записывать в форме F = dp/dt = d/dt (mv) = dm/dt*v + dv/dt*m = v*dm/dt + ma и добавка к ma возникает не из-за анизотропии массы, а из-за ее переменности, которая возникает, например и в ракете, которая становится легче по мере расхода топлива. |
Igorivanov 14:26, 18 Июл 2004 (UTC) |
При чем тут переменная масса?? Вот тебе простой вопрос. Есть релятивистская частица со скоростью v. В одном случае к ней прикладывают силу F вдоль движения, в другом слчае — поперек движения. Вопрос: чему равно ускорение (пусть пока абсолютная величина вектора) в обоих этих случаях? Вот из-за того, что ускорение будет разным, приходится и вводить разные массы. Второй вопрос: а если сила направлена под произвольным углом, куда будет направлено ускорение? Оказывается, не коллинеарно силе. Ну и что будем делать в этой ситуации? Выхода два: или вводить релятивистскую массу, зависязую от угла, или вводить тензор масс, и тогда второй закон ньютона становится тензонрым. |
Dims 16:55, 18 Июл 2004 (UTC) |
Ну как же причем? При самом при том! Вот тебе аналогичный вопрос: есть ракета с полными баками. В одном случае она включает двигатели, развивающие силу 1 килоньютон, а в другом случае — включает электромагнитную катушку, которая притягивает ракету к бесконечно тяжелой космической базе с силой в тот же 1 килоньютон. Скорость истечения газов меняется согласно удобной для данной иллюстрации формуле. Чему будет равно ускорение в обоих случаях? Значит ли это, что ракета обладает разной химической и электромагнитной массами? Да можно просто взять Ландау-Лифшица и раскрыть страницу, где «обосновывается» различие продольной и поперечной масс (параграф энергия и импульс) и убедиться, что в математических выкладках различие возникает ТОЛЬКО из-за того, что гамма также оказывается зависящей от времени. Итак, если считать, что релятивистская масса дается выражением m = m_0 / sqrt{1 — v^2/c^2} и не забыть, что для учесть особенности движения тел с переменной массой, то все будет «чики-пуки». |
Igorivanov 17:05, 18 Июл 2004 (UTC) Дубль два. |
Поскольку я обосновываю неудобство релятивистской массы, то именно я должен приводить примеры случаев, когда она неудобна. Я привел два примера. Они убедительно показывают, насколько она неудобна. Ты же все предлагаешь рассмотреть еще один пример. По боку его, он никакого отношения не имеет к тому, что я хочу показать! Я прошу тебя убедиться в том, насколько неудобен разговор в терминах релятивистской массы в двух описанных мной случаях. Уже их достаточно, чтобы всячески рекомендовать изучаюзим ТО не пользоваться этим понятием. |
Dims 17:27, 18 Июл 2004 (UTC) Я могу и по-тупому, мне безразлично. |
Буквально неверно следующее твое утверждение: «Вот из-за того, что ускорение будет разным, приходится и вводить разные массы». Отсюда неверными получаются твои выводы о неудобстве, так как заявленное тобой неудобство заключалось во множественности масс, а ее нет. Релятивистская масса одна, просто она зависит от скорости. |
Igorivanov 17:43, 18 Июл 2004 (UTC) |
Я описываю ситуацию при одной единственной скорости! И утверждаю, что при этой самой скорости инфинитезимально малые приращения скорости под действие одной и той же по модулю силы в разных направления разные! Ну и какой ты сделаешь из этого вывод? |
Dims 20:22, 18 Июл 2004 (UTC) |
Ведь неспроста же ты не скажешь четко и ясно сам, что «масса — это частное от деления силы на ускорение»! Так как это верно только при постоянной массе! А масса-то у нас как раз не постоянна и будет сразу видно, что ты не прав! |
Igorivanov 07:12, 19 Июл 2004 (UTC) |
Удивительно, что ты так упорно игнорируешь мои слова. Ладно, вопрос в лоб (только плиз ответь!)ты согласен с тем, что в произвольном случае вектор силы и вектор ускорения неколлинеарны? Если да, то как с помощью единой величины — релятивистской массы — ты собираешься записать второй закон Ньютона? И вообще, что такое в твоем определении эта релятивистская масса? Напиши соответствующую статью, а |
MaxiMaxiMax 18:02, 18 Июл 2004 (UTC) Горячие физические парни! |
С одной стороны это здорово что у вас тут такая оживлённая дискуссия, но, боюсь что она не имеет отношения к теме Википедии. Я думаю, что вам было бы лучше обменяться ICQ или ещё проще телефонами и поговорить приватно. А вдруг к тому же окажется, что вы ещё и недалеко друг от друга живёте — так можете и встретиться чтобы лично обсудить СТО. Я думаю что читателей этой статьи может несколько озадачить столь оживлённая научная дискуссия 🙂 |
Igorivanov 18:12, 18 Июл 2004 (UTC) |
Пришел Макс и всех развел. Я живу далеко 🙂 |
MaxiMaxiMax 18:34, 18 Июл 2004 (UTC) |
В Бонне что-ли? Я зато недалеко сравнительно — в Карлсруэ 🙂 |
Dims 20:22, 18 Июл 2004 (UTC) |
|
Igorivanov 13:23, 21 Июл 2004 (UTC) Признаю свою неправоту |
Никакой тензор масс вводить не надо. Правильно написал Dims в первом посте: F = dp/dt = v*dm/dt + ma и добавка к ma возникает не из-за анизотропии массы, а из-за ее переменности. Только он меня своей ракетой с толку сбил 🙂 Насчет занимались или не занимались релятивистской массой. Да занимались естественно, по крайней мере вначале. Но только видно, что в ней никакой дополнительной физики нет. А вот инвариантная масса, как оказалось, действительно важна — именно она за гравитацию отвечает. Ну и кроме того, при записи уравнений движения в ковариантном виде, когда появляется 4-скорость, сразу видно, что релятивистская масса неудобна. В общем, общий вывод не изменился: не ошибка она конечно, а просто неудобный язык разговора. |
А в чём причина согласия? |
А в чём, собственно, причина признания? Ракеты с толку сбили, а что же тогда навело на толк? Мож работу какую посмотрел? Дай тогда ссылку, мне тоже интересно! 🙂 |
Igorivanov 09:28, 22 Июл 2004 (UTC) |
Думал. 🙂 На самом деле, я почему-то считал, что релятивистская масса — это то, что вводится в уравнение, связывающее силу и ускорение. На самом же деле, конечно, релятивистская масса — это то, что вводится в уравнение для импульса через скорость. А уж потом его дифференциируем и получаем доп. члены во втором законе ньютона. Вообще, поскольку введение релятивистской массы — это всего лишь перебрасывание корешка от четырёхскорости (так удобнее говорить) к массе, то математически ничего при этом никаких новых сущностей типа тензоров и не должно появиться. (Это кстати тоже навело н мысль). А вот то, что инвариантный язык 4-вектров при этом теряется, это кстати я еще раз подчёркиваю как введения неудобство релятивистской массы. |